Fast Segmentation and Classification of Very High Resolution Remote Sensing Data Using SLIC Superpixels
نویسنده
چکیده
Speed and accuracy are important factors when dealing with time-constraint events for disaster, risk, and crisis-management support. Object-based image analysis can be a time consuming task in extracting information from large images because most of the segmentation algorithms use the pixel-grid for the initial object representation. It would be more natural and efficient to work with perceptually meaningful entities that are derived from pixels using a low-level grouping process (superpixels). Firstly, we tested a new workflow for image segmentation of remote sensing data, starting the multiresolution segmentation (MRS, using ESP2 tool) from the superpixel level and aiming at reducing the amount of time needed to automatically partition relatively large datasets of very high resolution remote sensing data. Secondly, we examined whether a Random Forest classification based on an oversegmentation produced by a Simple Linear Iterative Clustering (SLIC) superpixel algorithm performs similarly with reference to a traditional object-based classification regarding accuracy. Tests were applied on QuickBird and WorldView-2 data with different extents, scene content complexities, and number of bands to assess how the computational time and classification accuracy are affected by these factors. The proposed segmentation approach is compared with the traditional one, starting the MRS from the pixel level, regarding geometric accuracy of the objects and the computational time. The computational time was reduced in all cases, the biggest improvement being from 5 h 35 min to 13 min, for a WorldView-2 scene with eight bands and an extent of 12.2 million pixels, while the geometric accuracy is kept similar or slightly better. SLIC superpixel-based classification had similar or better overall accuracy values when compared to MRS-based classification, but the results were obtained in a fast manner and avoiding the parameterization of the MRS. These two approaches have the potential to enhance the automation of big remote sensing data analysis and processing, especially when time is an important constraint.
منابع مشابه
Segmentation Improvement of High Resolution Remote Sensing Images based on superpixels using Edge-based SLIC algorithm (E-SLIC)
The segmentation of high resolution remote sensing images is one of the most important analyses that play a significant role in the maximal and exact extraction of information. There are different types of segmentation methods among which using superpixels is one of the most important ones. Several methods have been proposed for extracting superpixels. Among the most successful ones, we can r...
متن کاملImproving the Speed of Multiresolution Segmentation Using Slic Superpixels
The popular multiresolution segmentation (MRS) algorithm is time and memory consuming when dealing with large images because it uses the pixel-grid for the initial object representation. In this study, we have tested a new workflow for image segmentation of remote sensing data, starting the MRS (using the ESP2 tool) from the superpixel level (using SLIC superpixels) and aiming at dramatically r...
متن کاملMulti-Feature Segmentation for High-Resolution Polarimetric SAR Data Based on Fractal Net Evolution Approach
Segmentation techniques play an important role in understanding high-resolution polarimetric synthetic aperture radar (PolSAR) images. PolSAR image segmentation is widely used as a preprocessing step for subsequent classification, scene interpretation and extraction of surface parameters. However, speckle noise and rich spatial features of heterogeneous regions lead to blurred boundaries of hig...
متن کاملPalarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm
Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...
متن کاملSuperpixel-based Unsupervised Change Detection Using Multi-dimensional Change Vector Analysis and Svm-based Classification
In this paper, a novel superpixel-based approach is introduced for unsupervised change detection using remote sensing images. The proposed approach contains three steps: 1) Superpixel segmentation. The simple linear iterative cluster (SLIC) algorithm is applied to obtain lattice-like homogenous superpixels. To avoid discordances of the superpixel boundaries obtained from bi-temporal images, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017